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ABSTRACT: Cellular proteostasis is maintained by stress-responsive
signaling pathways such as the heat shock response (HSR), the oxidative
stress response (OSR), and the unfolded protein response (UPR).
Activation of these pathways results in the transcriptional upregulation of
select subsets of stress-responsive genes that restore proteostasis and
adapt cellular physiology to promote recovery following various types of
acute insult. The capacity for these pathways to regulate cellular
proteostasis makes them attractive therapeutic targets for correcting
proteostasis defects associated with diverse diseases. High-throughput
screening (HTS) using cell-based reporter assays is highly effective for
identifying putative activators of stress-responsive signaling pathways.
However, the development of these compounds is hampered by the lack of medium-throughput assays to define compound
potency and selectivity for a given pathway. Here, we describe a targeted RNA sequencing (RNAseq) assay that allows cost-
effective, medium-throughput screening of stress-responsive signaling pathway activation. We demonstrate that this assay allows
deconvolution of stress-responsive signaling activated by chemical genetic or pharmacologic agents. Furthermore, we use this
assay to define the selectivity of putative OSR and HSR activating compounds previously identified by HTS. Our results
demonstrate the potential for integrating this adaptable targeted RNAseq assay into screening programs focused on developing
pharmacologic activators of stress-responsive signaling pathways.

Imbalances in cellular proteostasis can be induced by genetic,
environmental, or aging-related insults and are intricately

involved in the pathology of multiple, etiologically diverse
diseases.1−3 These include diabetes, cardiovascular disorders,
and neurodegenerative diseases such as Alzheimer’s and
Parkinson’s disease.1−5 To protect from these types of insults,
cells have developed an integrated network of stress-responsive
signaling pathways, including the heat shock response
(HSR),6−8 the oxidative stress response (OSR),9−11 the
unfolded protein response (UPR),12−15 and the integrated
stress response (ISR)16 (Figure 1A). These pathways are
activated by both distinct and overlapping types of stress and
initiate signal transduction pathways that ultimately activate
transcription factors such as HSR-associated heat shock factor 1
(HSF1), OSR-associated nuclear factor erythroid 2 (NRF2),
and the UPR-associated transcription factors X-box binding
protein 1 (XBP1s), activating transcription factor 6 (ATF6), and
activating transcription factor 4 (ATF4) (the latter also being
implicated in the ISR).6−8,12,17,18 Importantly, cellular stresses
can often elicit both direct and indirect activation of multiple
stress-responsive signaling pathways simultaneously.19 As a
result, downstream transcription factors integrate their signaling
to induce select subsets of stress-responsive genes to alleviate

specific types of proteostasis stress and promote cellular
recovery following an acute insult.
The capacity for these signaling pathways to protect cells

against different types of proteostasis-related stress makes them
highly attractive therapeutic targets for ameliorating pathologic
imbalances in proteostasis associated with diverse human
diseases.1,20−25 Specifically, the activation of a single stress-
responsive signaling pathway can be highly advantageous
because it allows for the selective remodeling of cellular
proteostasis without inducing apoptotic signaling pathways
associated with global cellular stress. For example, stress-
independent activation of the UPR-associated transcription
factors XBP1s and ATF6 can alleviate endoplasmic reticulum
(ER) stress-induced toxicity and promote secretory proteostasis
of numerous disease-associated, aggregation-prone proteins,
independent of pro-apoptotic signaling induced downstream of
global ER stress-dependent UPR activation.26−28 Because of the
potential for stress-independent activation of these signaling
pathways to influence disease, significant effort has been
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dedicated to developing highly selective pharmacologic
activating compounds that target each of these pathways.
The development of these pharmacologic activators has

primarily been pursued using high-throughput screening (HTS)
approaches that employ cellular transcriptional reporters of
target genes activated downstream of specific stress pathways,
including the ATF6 signaling arm of the UPR and the HSF1-

dependent HSR.21,26,29−33 While this approach has effectively
identifiedmany putative activators of these pathways, the further
development and characterization of these HTS hits are often
hampered by complications, including reporter interference, a
lack of compound selectivity for a given pathway, or reporter
constructs not reliably reporting on activation of the entire
protective transcriptional program.25,31,34,35 Without proper

Figure 1. Targeted RNA sequencing deconvolutes stress-responsive transcriptional programs. (A) Illustration showing the stress-responsive
proteostasis pathways profiled in our targeted RNAseq assay. Stresses that activate each pathway and specific transcription factors activated
downstream of these pathways are also shown. (B) Schematic of the general protocol used for our targeted RNAseq assay. Briefly, RNA is isolated from
cells in a 96-well plate format following a given treatment. This RNA is then converted into cDNA libraries that are probed using oligos targeted to
specific stress-responsive genes (red) for sequencing library generation. Barcoded sequencing libraries from each individual treatment condition are
then pooled for sequencing. (C) Dendrogram of individual target genes from our targeted RNAseq panel (see Table 1) grouped by hierarchical
clustering using the Euclidean distance between each gene’s expression level correlation coefficients over all treatment conditions (see Table 2 and
Table S1). Genes are colored by assignment to specific stress-responsive signaling pathways to report on activation of the HSR (orange), the OSR
(purple), the ATF6UPR signaling pathway (blue), the IRE1/XBP1s UPR signaling pathway (red), the PERK/ISR signaling pathway (green), or other
pathways (gray). The asterisks identify SOD1 (purple) andMTHFR (green). (D) Network graph of individual target genes from our targeted RNAseq
panel showing the clustering of genes into defined stress-responsive signaling pathways. This graph is derived by representing each gene as a vertex and
connecting the vertices for genes whose changes in expression level correlate with Pearson R > 0.6. Genes that do not correlate at this level with any
other genes are connected only to the gene with which they have the highest correlation coefficient. Pathways are colored using the same scheme
described above in Figure 1C. SOD1 and MTHFR are identified by name.
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tools to assess selectivity across broad stress signaling pathways,
it is difficult to determine whether previous HTS has identified
effective compounds that selectively activate these pathways.
One strategy for increasing the efficiency of identifying

specific pathway activators from many screening hits is to
incorporate upstream transcriptional profiling to first define the
activation spectrum among stress-responsive signaling path-
ways. The benefits of this approach have been demonstrated
with the recent establishment of compounds that preferentially
activate the ATF6 signaling arm of the UPR, where multiplex
gene expression (MGE) profiling was integrated into a screening
pipeline centered on cell-based transcriptional reporters.26

However, despite the evidence highlighting the benefit of
incorporating transcriptional profiling into screening platforms,
cost-effective strategies for profiling stress-responsive signaling
pathway activation in amedium-throughput format are currently
lacking.
Defining the magnitude and repertoire of activation among

stress-responsive signaling pathways for a given stimulus is
complicated by multiple challenges. Stress-responsive genes can
be regulated by multiple signaling pathways, making it difficult
to discern pathway activation by tracking the expression of a
single gene. For example, OSR target gene HMOX1 can be
regulated by multiple stress-responsive transcription factors,
including NRF2 (OSR), HSF1 (HSR), and NF-κB.36

Furthermore, many stress-responsive signaling pathways have
overlapping sets of target genes, challenging the ability to define
selective activation of a certain pathway. For example, a majority
of genes regulated by the UPR-associated transcription factor
ATF6 are also activated, albeit to lower extents, by the
alternative UPR-associated transcription factor XBP1s, thus
making it difficult to deconvolute specific activation of these
pathways by monitoring expression of a single gene.28

Additionally, different stress-responsive signaling pathways
induce target genes to varying extents. For example, HSF1
(HSR) target genes can be induced >10-fold more than UPR
target genes.17,28 These properties of stress-responsive signaling
challenge the ability to monitor activation of specific pathways

using strategies such as gene set enrichment analysis (GSEA),
which is biased toward pathways that elicit stronger transcrip-
tional responses and does not easily deconvolute overlapping
stress-responsive transcriptional programs. Furthermore, GSEA
requires whole transcriptome RNA sequencing (RNAseq)
profiling to define pathway activation, limiting its application
as a medium-throughput screening approach. One potential
strategy for addressing the challenges mentioned above is to
monitor activation of specified sets of stress-responsive genes
regulated downstream of different stress-responsive signaling
pathways, wherein pathway activation is defined by the grouped
behavior for all relevant target genes. This strategy requires
measuring multiple genes activated downstream of different
stress-responsive signaling pathways in a cost-effective assay.
Recent advances in RNA sequencing have demonstrated the

potential for this approach to be integrated into drug discovery
pipelines. For example, the DRUG-seq platform established a
cost-effective strategy for profiling compounds in a high-
throughput format, providing a powerful approach for defining
the compound mechanism of activation and selectivity.37

However, this approach requires specialized equipment that
would make it difficult to implement in most research
laboratories. In contrast, the targeted RNAseq platform,
described in the past 5 years (previously described as Capture-
seq38), provides a unique opportunity to screen expression of
100−1000 genes in a cost-effective, medium-throughput format.
Because this approach uses target-specific generation of
sequencing libraries, targeted RNAseq demonstrates improved
sensitivity for low-copy transcripts, potentially providing a larger
dynamic range for tracking changes in both weakly and strongly
expressed genes. Furthermore, targeted RNAseq avoids back-
ground issues caused by nonspecific probe binding or probe
cross-hybridization found in technologies such as microarrays.39

As such, this approach has been used in diverse contexts,
including measuring the expression of alleles in plant
populations,40 detection of gene fusions in solid tumors,41 and
monitoring activation of cell death pathways.42

Table 1. Targeted RNAseq Gene Panel for Reporting on Activation of Stress-Responsive Proteostasis Pathways

other

ATF6 XBP1s PERK/ISR HSR OSR hypoxic SR NFkB URPmito miscellaneous

CALR DERL2 ASNS BAG3 GCLM GAPDH NFKB1 AFG3L2 ANAPC5 UFC1
CRELD2 DNAJB9 ATF3 CRYAB HMOXI LDHA NFKB2 CLPP ATP5B ARF1
DNAJB11 ONAJC10 ATF4 CLU PRDX1 PGK1 NFKBIA DNAJA3 B2M MRPL20
HERPUD1 EDEM2 ATF6 DNAJB1 SOD1 SLC2A1 RELA ENDOG CHMP4B OMAI
HSPA5 HSPA13 CARS ONAJB4 SQSTMI TFRC TRAF2 HSPA9 E1F4H PRELIDI
HYOU1 LMAN1 CEBPB GADD45B TXNRD1 VEGFA CCL2 LONPI GUSB SLC25A28
MANF OSTC DD1T3 HBA2 GCLC ALDOA ICAM1 TXN2 HNRNPK TIMMI7A
MIS12 PD1A5 DDIT4 HSP9OAA1 NQO1 AK3 SERPINA3 YME1L1 MRPL9 TOMM22
PD1A4 PLPP5 GADD45A HSPAIA ME1 EDN1 TNFAIP3 HSPADI PIGT CEBPA
PD1A6 SEC23B PPP1R15A HSPA1B TXN FLT1 CCL5 PSMB1 ERP44
SEL1K SEC61A1 SARS HSPA4L RBM42 SEC31A
SEL1L SRP19 SLC1A4 HSPB1 RNF181 CYR61
SLC39A414 SRPRB TR1B3 HSPH1 RPL13 MRPL18
SLFN11 SSR1 WARS IER5 RPLP0 BTG2
TMEM50B SSR3 YARS RGS2 SSBP1 GPX1
UGDH STT3A ABCF2 SERP1NH1 SUMO1 SOD2
HSD1787 UFM1 MTHFR SUPT6H TP53
PLEKHA6 FICD PON2 THRAP3 GSR
STARD4 MBNL2 LMO4 UBE2D3

CBX4

ACS Chemical Biology Articles

DOI: 10.1021/acschembio.9b00134
ACS Chem. Biol. XXXX, XXX, XXX−XXX

C

http://dx.doi.org/10.1021/acschembio.9b00134


Here, we describe a targeted RNAseq assay designed to define
activation of stress-responsive proteostasis pathways in a
medium-throughput format. We show that this approach allows
accurate deconvolution of stress-responsive pathway activation
induced by diverse chemical genetic and pharmacologic agents.
Furthermore, we demonstrate the potential for this approach to
define the selectivity of pharmacologic activators of stress-
responsive signaling pathways by profiling the selectivity of
compounds identified by high-throughput reporter screening to
activate the OSR-associated transcription factor NRF2 or the
HSR-associated transcription factor HSF1.21,29 Ultimately, our
results show that targeted RNAseq profiling is a highly adaptable
strategy that can be efficiently incorporated into HTS pipelines
and downstream compound development to improve the
establishment of pharmacologic activators of specific stress-
responsive signaling pathways.

■ RESULTS AND DISCUSSION
A Targeted RNAseq Assay for Monitoring Activation

of Stress-Responsive Proteostasis Pathways. To establish
a targeted RNAseq assay for monitoring activation of stress-
responsive proteostasis pathways, we first defined gene sets
predicted to accurately report on the activation of the
predominant proteostasis pathways: the HSR, the OSR, the
three signaling arms of the UPR, and the ISR (Figure 1A). We
examined published transcriptional profiles using chemical
genetic or pharmacologic approaches that selectively activated
these stress-responsive signaling pathways in a stress-independ-
ent manner, to manually identify sets of proteostasis genes
induced by each pathway. From these data, we selected 10−20
reporter genes activated downstream of the HSR,17 the OSR,43

and the IRE1/XBP1s, ATF6, and PERK/ATF4 signaling arms of
the UPR28,44−46 (Figure 1A and Table 1). Genes included were
efficiently expressed and robustly induced by these pathways, to
ensure efficient reporting in our targeted RNAseq assay. To
address issues such as pathway overlap for the IRE1/XBP1s and
ATF6 gene sets, we assigned genes to the pathway that elicited
>75% gene activation when they were activated independently
as compared to that observed during combined activation, as
previously described.28 Importantly, the gene set that reports on
activation of the PERK/ATF4 signaling arm of the UPRwas also
used to monitor activation of the ISR, as both are activated
through a process involving phosphorylation of the α subunit of
eukaryotic initiation factor 2 (eIF2α) and the activity of the
ATF4 transcription factor.18,46 Stress-responsive genes activated
downstream of other stress-responsive signaling pathways,
including the hypoxic stress response,47 NFκB signaling,43,48

and the poorly definedmitochondrial unfolded protein response
(UPRmt),49−51 were additionally selected from published
transcriptional profiles that used stress-dependent activation of
these pathways to define target gene induction. The inclusion of
these genes in our gene panel improves our ability to identify
compounds selective for a given proteostasis pathway. Our final
gene panel consists of the 150 target genes listed in Table 1.
We used the established targeted RNAseq profiling approach

with this custom gene panel to define the activation of stress-
responsive signaling pathways in multiple HEK293-derived cell
lines grown in 96-well plates subjected to conditions predicted
to activate the different stress-responsive proteostasis pathways
shown in Figure 1A (see Table 2 and Table S1). Briefly, we
isolated RNA from these cells and generated cDNA libraries
using a standard reverse transcriptase reaction. We then
amplified our genes of interest for sequencing using targeted

primer sets directed to the 150 genes in the panel (Figure 1B).
Amplicons were then isolated and pooled for sequencing using
the Illumina, Inc., MiSeq desktop sequencer at a target depth of
50 million paired-end reads for all pooled samples. The overall
alignment of reads reflected the specific nature of this approach,
with >93% of reads aligning to target regions, which is
significantly greater than that observed in conventional whole
transcriptome RNAseq experiments (Figure S1A). Our desktop
MiSeq sequencing run yielded a median of ∼580000 reads per
sample (19 conditions in triplicate, including vehicle controls for
each cell line; 57 samples total), which is approximately 1% of
the number of reads aligned per sample with whole tran-
scriptome RNAseq on the same platform (approximated to 44−
50 × 106 reads per sample). Additionally, per gene target, our
targeted RNAseq assay yielded a median of 721.7 aligned reads
(median total of >41000 reads) across all treatment conditions
included in these analyses (Figure S1B,C). All of the data from
this targeted RNAseq assay are included in Table S2.
Across replicate samples, we observed high reproducibility

with all treatments demonstrating an R2 value of >0.7 and most
having an R2 values of >0.85 (Figure S1D,E). From aligned
count data, we performed unbiased clustering across all
treatment conditions to determine our ability to accurately
define different stress signaling pathways (Figure 1C,D and
Figure S1F). This analysis shows that genes regulated by the
HSR, OSR, and the three arms of the UPR (IRE1/XBP1s,
ATF6, and PERK/ISR) generally cluster together, reflecting
their similar regulation across the various stress conditions.
However, despite this clustering, we observe significant overlap
between gene sets, reflecting their integrated activation in
response to diverse types of stimuli. For example, the IRE1/
XBP1s (red in Figure 1D) and ATF6 (blue in Figure 1D) gene
sets show significant overlap, reflecting the coordinated
activation of these two pathways in response to ER stress.
Furthermore, certain genes such as SOD1, activated downstream
of the OSR-associated transcription factor NRF2,52 separate
from the OSR cluster (purple in Figure 1C,D), reflecting the
ability of this gene to be regulated by multiple stress-responsive
signaling pathways apart from the OSR.53 The PERK/ISR target
MTHFR is also regulated by other UPR signaling pathways, as
well as the OSR,54,55 and is similarly found to separate from the
larger cluster of PERK/ISR targets (green in Figure 1C,D). The

Table 2. Treatment Conditions for Stress Signaling Targeted
RNAseq

cell type treatment targeted pathway

293TcHSF1 arsenite [As(III)] HSR/OSR/ISR
293TcHSF1 dox-HSF1 HSR
293DAX dox-XBP1s XBP1s
293DAX DHFR-ATF6 ATF6
293DAX dox-XBP1s and DHFR-ATF6 XBP1s and ATF6
293DAX thapsigargin (Tg) UPR
293T thapsigargin (Tg) UPR
293T tunicamycin (Tm) UPR
293T oligomycin lSR/OSR
293T paraquat lSR/OSR
293T CBR-470-1 OSR
293T bardoxolone OSR
293T A3 HSR
293T C1 HSR
293T D1 HSR
293T F1 HSR
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Figure 2. Targeted RNAseq accurately defines HSR activation induced by stress-independent activation of cHSF1. (A) Log2-normalized aligned
transcript counts for HEK293TREX cells expressing doxycycline (dox)-inducible cHSF1 treated with 2.25 μM dox (y-axis) or vehicle (x-axis) for 16 h.
Aligned transcript counts represent averages from three independent replicates quantified from our targeted RNAseq assay. All identified genes are
HSR target genes. (B) Plot showing residuals calculated by comparing the expression of our panel of stress-responsive genes between HEK293TREX

cells expressing dox-inducible cHSF1 following treatment with dox (2.25 μM) or vehicle for 16 h. Calculation of residuals was performed as described
in the legend of panel A. Statistics were calculated using one-way analysis of variance (ANOVA). The significance reflects comparison to the “other”
target transcript set. **p < 0.01, ***p < 0.001; ****p < 0.0001. See Table S3 for the full ANOVA table.

Figure 3. Targeted RNAseq defines stress-independent activation of UPR-associated signaling pathways. (A) Plot showing residuals calculated by
comparing the expression of our panel of stress-responsive genes between HEK293DAX cells following treatment with trimethoprim (10 μM for 4 h;
activates DHFR-ATF6) or vehicle. Calculation of residuals was performed as described in the legend of Figure 2A. Statistics were calculated using one-
way ANOVA. The significance reflects comparison to the “other” target transcript set. ****p < 0.0001. See Table S3 for the full ANOVA table. (B) Plot
showing residuals calculated by comparing the expression of our panel of stress-responsive genes between HEK293DAX cells following treatment with
dox (1 μg/mL for 4 h; activates dox-inducible XBP1s) or vehicle. Calculation of residuals was performed as described in the legend of Figure 2A.
Statistics were calculated using one-way ANOVA. The significance reflects comparison to the “other” target transcript set. ****p < 0.0001. See Table
S3 for the full ANOVA table. (C) Plot showing residuals calculated by comparing the expression of our panel of stress-responsive genes between
HEK293DAX cells following treatment with both trimethoprim (10 μM for 4 h; activates DHFR-ATF6) and dox (1 μg/mL for 4 h; activates dox-
inducible XBP1s) or vehicle. Calculation of residuals was performed as described in the legend of Figure 2A. Statistics were calculated using one-way
ANOVA. The significance reflects comparison to the “other” target transcript set. ****p < 0.0001. See Table S3 for the full ANOVA table. (D) Graph
showing normalized residuals for gene sets regulated by the ATF6 (blue), XBP1s (red), or PERK (green) UPR signaling pathways in HEK293DAX cells
following treatment with TMP (10 μM for 4 h; activates DHFR-ATF6). The residuals for each gene were normalized to those observed for
thapsigargin (Tg)-induced ER stress in HEK293DAX cells (Figure S3A,B). Normalized data were subjected to ROUT outlier testing. Statistics from
one-way ANOVA. **p < 0.01; ***p < 0.001. (E) Graph showing normalized residuals for gene sets regulated by the ATF6 (blue), XBP1s (red), or
PERK (green) UPR signaling pathways in HEK293DAX cells following treatment with dox (1 μg/mL for 4 h; activates dox-inducible XBP1s). The
residuals for each gene were normalized to those observed for thapsigargin (Tg)-induced ER stress in HEK293DAX cells (Figure S3A,B). Normalized
data were subjected to ROUT outlier testing. Statistics from one-way ANOVA. **p < 0.01; ***p < 0.001. (F) Graph showing normalized residuals for
gene sets regulated by the ATF6 (blue), XBP1s (red), or PERK (green) UPR signaling pathways in HEK293DAX cells following treatment with both
TMP (10 μM for 4 h; activates DHFR-ATF6) and dox (1 μg/mL for 4 h; activates dox-inducible XBP1s). The residuals for each gene were normalized
to those observed for thapsigargin (Tg)-induced ER stress in HEK293DAX cells (Figure S3A,B). Normalized data were subjected to ROUT outlier
testing. Statistics from one-way ANOVA. *p < 0.05; **p < 0.01.
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overlap of gene sets and promiscuity for specific genes to report
on multiple pathways highlights the importance of tracking sets
of stress-responsive genes for defining overall pathway
activation. However, the general clustering of our stress pathway
gene sets indicates that this targeted RNAseq assay is capable of
tracking changes in stress-responsive genes to accurately define
activation of specific stress-responsive signaling pathways.
Defining Stress-Independent HSR and UPR Signaling

Pathways through Targeted RNAseq Profiling. We
initially validated the ability for our targeted RNAseq assay to
report on activation of specific stress signaling proteostasis
pathways using chemical genetic approaches that allow
activation of specific pathways independent of stress. First, we
defined activation of the HSR-regulated proteostasis genes in
HEK293TREX cells following doxycycline (dox)-dependent
activation of a constitutively active HSF1 (cHSF1),17 the
primary transcription factor regulated by the HSR.6−8 To define
the induction of specific target proteostasis genes in our targeted
RNAseq data, we first median-normalized aligned counts per
target gene across all treatment conditions. We took average
normalized count values across sample replicates and performed
a log2 transformation, yielding the “log2-normalized counts”
used for relative expression analysis. To compare chemical
genetic and pharmacologic activating conditions versus vehicle
control samples, we conducted a linear regression of log2-
normalized counts to yield a line of best fit (Figure 2A),
reflecting baseline expression levels for the majority of genes not
affected by a given treatment. We then calculated the deviation
of each target gene for the experimental condition from the line
of best fit, or “residual value”, which was used to quantify up- and
downregulation of that gene (Figure 2A). Finally, we define
pathway activation by plotting the residual values of each gene
from this analysis, grouped according to the assigned stress-
responsive pathway, and monitoring the overall behavior of the
gene set (Figure 2B). This allows us to normalize variability in
gene induction across different treatments and minimize
challenges associated with weakly expressed genes that show
high levels of induction. From this analysis, we demonstrate that
dox-dependent cHSF1 activation robustly and selectively

activates the entire target HSR-regulated proteostasis program,
thus confirming the ability for our targeted RNAseq assay to
define activation of this pathway (Figure 2B and Table S3).
Interestingly, the activation of this pathway is identical to that
observed when we perform the same analysis using published
RNAseq transcriptional profiles for dox-dependent cHSF1
activation,17 demonstrating that our RNAseq assay accurately
quantifies the induction of HSR-regulated proteostasis target
genes (Figure S2A−C).
A significant challenge in monitoring activation of stress-

responsive signaling pathways is the overlap between closely
related pathways. For example, the IRE1/XBP1s UPR pathway
induces expression of multiple genes also regulated by the ATF6
UPR signaling pathway, albeit to lower extents.28 Furthermore,
other XBP1s target genes are often induced to levels lower than
that observed for ATF6-selective target genes.28 To define the
potential for targeted RNAseq to discern selective activation of
these two UPR signaling pathways, we performed this assay in
HEK293DAX cells subjected to stress-independent XBP1s and/
or ATF6 activation. HEK293DAX cells express dox-inducible
XBP1s and trimethoprim (TMP)-regulated DHFR-ATF6,
allowing activation of these two transcription factors in the
same cell independent of ER stress through administration of
dox and/or TMP.28 As a control, we also monitored gene
expression in response to global ER stress induced by treating
HEK293DAX cells with the SERCA pump inhibitor, thapsigargin
(Tg). As expected, Tg treatment showed robust activation of all
three UPR signaling pathways (IRE1/XBP1s, ATF6, and
PERK/ISR), confirming global UPR activation (Figure
S3A,B). In contrast, TMP-dependent DHFR-ATF6 activation
showed significant increases in the ATF6 target gene set,
consistent with selective ATF6 activation (Figure 3A).
However, dox-inducible XBP1s increased the level of expression
of both the IRE1/XBP1s and ATF6 target gene sets, although
ATF6 target genes were induced less than that observed
following ATF6 activation (Figure 3B), which is consistent with
previous work.28 Combined treatment with dox (activating
XBP1s) and TMP (activating DHFR-ATF6) elicited a strong
upregulation of both gene sets (Figure 3C).

Figure 4. Targeted RNASeq profiling defines activation of stress-responsive signaling pathways induced by diverse environmental toxins. (A) Plot
showing residuals calculated by comparing the expression of our stress-responsive gene panel between HEK293T cells following treatment with
tunicamycin (Tm; 10 μM for 4 h) or vehicle. Calculation of residuals was performed as described in the legend of Figure 2A. Genes are grouped by
target stress-responsive signaling pathway. Statistics were calculated using one-way ANOVA. The significance reflects comparison to the “other” target
transcript set. ***p < 0.001; ****p < 0.0001. See Table S3 for the full ANOVA table. (B) Plot showing residuals calculated by comparing the
expression of our stress-responsive gene panel between HEK293T cells following treatment with arsenite [As(III); 25 μM for 16 h] or vehicle.
Calculation of residuals was performed as described in the legend of Figure 2A. Genes are grouped by target stress-responsive signaling pathway.
Statistics were calculated using one-way ANOVA. The significance reflects comparison to the “other” target transcript set. **p < 0.01; ***p < 0.001.
See Table S3 for the full ANOVA table. (C) Plot showing residuals calculated by comparing the expression of our stress-responsive gene panel between
HEK293T cells following treatment with oligomycin A (Oligo; 100 nM for 24 h) or vehicle. Calculation of residuals was performed as described in the
legend of Figure 2A. Genes are grouped by target stress-responsive signaling pathway. Statistics were calculated using one-way ANOVA. The
significance reflects comparison to the “other” target transcript set. **p < 0.01. See Table S3 for the full ANOVA table.
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Previous reports indicate that the overlap between XBP1s and
ATF6 target gene expression observed following stress-
independent activation could be deconvoluted by normalizing
the expression of genes to that observed with Tg treatment,
providing a way to sensitively define the extent of pathway
activation.26 Performing this normalization shows that TMP-
dependent DHFR-ATF6 activation selectively induces expres-
sion of ATF6 target genes to levels similar to those observed for
Tg-dependent ER stress (Figure 3D). Importantly, dox-
dependent XBP1s activation selectively induces expression of
IRE1/XBP1s target genes to levels similar to that observed with
Tg by this analysis while only moderately affecting ATF6 target
gene expression (Figure 3E). This profile is distinct from that
observed in cells in which XBP1s and ATF6 are co-activated,
which shows significantly higher levels of induction of both gene
sets (Figure 3F). Importantly, when residual values from our
targeted RNAseq analysis are compared to transcriptional
changes from whole transcriptome RNAseq collected from
HEK293DAX cells subjected to XBP1s and/or ATF6 activation,
there is a clear correlation between the two data sets in
upregulated targets (Figure S3C−E). These results demonstrate
that our targeted RNAseq assay can sensitively deconvolute the
complex integration of stress-responsive signaling pathways
involved in UPR signaling.
Targeted RNAseq Profiling Defines Stress Pathway

Activation Induced by Cellular Toxins. We next used our

targeted RNAseq assay to profile activation of stress-responsive
signaling pathways induced by chemical toxins, including
tunicamycin (Tm; an ER stressor that inhibits N-linked
glycosylation), the environmental toxin arsenite [As(III)], the
mitochondrial ATP synthase inhibitor oligomycin, and the
ROS-generating compound paraquat (PQ). As predicted, our
assay demonstrates that these compounds induce unique
activation profiles of different stress-responsive signaling
pathways. Consistent with the selective induction of ER stress,
Tm treatment activates the three arms of the UPR without
globally impacting other stress-responsive signaling pathways
(Figure 4A). In contrast, As(III) induces robust activation of the
cytosolic HSR, OSR, and ISR signaling pathways (Figure 4B),
highlighting the promiscuous nature of this toxin for cytosolic
proteostasis pathway activation.56 Oligomycin treatment
significantly activated only the ISR gene set, reflecting emerging
evidence showing that mitochondrial stress promotes signaling
through this pathway (Figure 4C).8,50,51,57 PQ treatment also
showed modest increases in ISR genes, although the entire
pathway was not significantly activated (Figure S4). However,
while our gene sets report on activation of whole pathways,
numerous individual stress-responsive genes from multiple
pathways were induced upon these different treatments. For
example, theOSR target geneHMOX1 is induced in cells treated
withmitochondrial toxins oligomycin and paraquat, although we
do not observe induction of other OSR target genes. Because

Figure 5. Defining the selectivity of the reported NRF2 activating compounds through targeted RNAseq transcriptional profiling. (A) Plot showing
residuals calculated by comparing the expression of our stress-responsive gene panel between HEK293T cells treated with bardoxolone (1 μM for 24
h) or vehicle. Calculation of residuals was performed as described in the legend of Figure 2A. Genes are grouped by target stress-responsive signaling
pathway. Statistics were calculated using one-way ANOVA. The significance reflects comparison to the “other” target transcript set. **p < 0.01; ****p
< 0.0001. See Table S3 for the full ANOVA table. (B) Plot showing residuals calculated by comparing the expression of our stress-responsive gene
panel between HEK293T cells treated with CBR-470-1 (10 μM, 24 h) or vehicle. Calculation of residuals was performed as described in the legend of
Figure 2A. Genes are grouped by target stress-responsive signaling pathway. Statistics were calculated using one-way ANOVA. The significance reflects
comparison to the “other” target transcript set. **p < 0.01. See Table S3 for the full ANOVA table. (C)Graph showing qPCR analysis of theHSR target
gene BAG3 in HEK293T cells treated for 24 h with bardoxolone (1 μM) or CBR-470-1 (10 μM). Error bars show the standard error of the mean
(SEM) for three experiments. p values calculated using a one-tailed Student’s t test. (D) Graph showing qPCR analysis of the UPR (ATF6) target gene
BiP in HEK293T cells treated for 24 h with bardoxolone (1 μM) or CBR-470-1 (10 μM). Error bars show the SEM for three experiments. p values
calculated using a one-tailed Student’s t test. (E)Graph showing qPCR analysis of theOSR target geneHMOX1 in HEK293T cells treated for 24 hwith
bardoxolone (1 μM) or CBR-470-1 (10 μM). Error bars show the SEM for three experiments. p values calculated using a one-tailed Student’s t test.
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HMOX1 can be regulated bymultiple stress-responsive signaling
pathways,36 these results suggest that administration of these
toxins induces pleiotropic effects on multiple stress-responsive
signaling pathways outside of the four primary proteostasis
pathways profiled in our targeted RNAseq platform. Regardless,
it is clear that our targeted RNAseq assay does accurately reflect
predicted toxin-induced activation of proteostasis pathways,
further validating the benefit of this approach for profiling
pharmacologic activators of stress-responsive proteostasis path-
ways.
Defining the Selectivity of Pharmacologic NRF2

Activating Compounds through Targeted RNAseq Tran-

scriptional Profiling.We next employed our targeted RNAseq
assay to define the selectivity of two putative NRF2 activating
compounds: bardoxolone and the recently described CBR-470-
1 (Figure S5A).29 Bardoxolone is an anti-inflammatory
compound currently in clinical trials for chronic kidney disease.
This compound is reported to induce protective benefits
through activation of the OSR-associated transcription factor
NRF2.23,58 However, it also covalently modifies hundreds of
proteins59 and displays additional cellular activities, including
inhibition of themitochondrial protease LON,60 suggesting that,
apart from NRF2, bardoxolone could also activate other stress-
responsive signaling pathways. Interestingly, we show in

Figure 6. Defining the selectivity for HSF1 activating compounds identified through reporter-based HTS. (A) Plot showing residuals calculated by
comparing the expression of our stress-responsive gene panel between HEK293T cells treated with compound A3 (10 μM for 4 h) or vehicle.
Calculation of residuals was performed as described in the legend of Figure 2A. Genes are grouped by target stress-responsive signaling pathway.
Statistics were calculated using one-way ANOVA. The significance reflects comparison to the “other” target transcript set. ****p < 0.0001. See Table
S3 for the full ANOVA table. (B) Plot showing residuals calculated by comparing the expression of our stress-responsive gene panel between
HEK293T cells treated with compound C1 (10 μM for 4 h) or vehicle. Calculation of residuals was performed as described in the legend of Figure 2A.
Genes are grouped by target stress-responsive signaling pathway. Statistics were calculated using one-way ANOVA. The significance reflects
comparison to the “other” target transcript set. ****p < 0.0001. See Table S3 for the full ANOVA table. (C) Plot showing residuals calculated by
comparing the expression of our stress-responsive gene panel between HEK293T cells treated with compound D1 (10 μM for 4 h) or vehicle.
Calculation of residuals was performed as described in the legend of Figure 2A. Genes are grouped by target stress-responsive signaling pathway.
Statistics were calculated using one-way ANOVA. The significance reflects comparison to the “other” target transcript set. ****p < 0.0001. See Table
S3 for the full ANOVA table. (D) Plot showing residuals calculated by comparing the expression of our stress-responsive gene panel between
HEK293T cells treated with compound F1 (10 μM for 4 h) or vehicle. Calculation of residuals was performed as described in the legend of Figure 2A.
Genes are grouped by target stress-responsive signaling pathway. Statistics were calculated using one-way ANOVA. The significance reflects
comparison to the “other” target transcript set. *p < 0.05. See Table S3 for the full ANOVA table. (E) Heat map of fold change transcript levels from
whole transcriptome RNAseq (relative to vehicle-treated cells) for the 100 genes most significantly altered by A3 treatment in HEK293T cells (82
positive regulation, top; 10 negative regulation, bottom). The changes in these genes are also shown for HEK293T cells treated with C1, D1, and F4
(10 μM for 4 h). (F) Venn diagrams showing the overlap of upregulated genes from whole transcriptome RNAseq of HEK293T cells treated with A3
(10 μM for 4 h) and HeLa cells under heat shock (left)6 or dox-inducible cHSF1 (right) in HEK293TREX cells.17 Select genes identified in the overlap
are highlighted. (G) Numbers of genes fromGO analysis of significantly altered transcripts in HEK293T cells treated with compound A3 (10 μM for 4
h) relative to vehicle-treated cells. GO analysis was performed using David.61 The entire GO analysis is reported in Table S5.
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HEK293T cells that bardoxolone significantly induces ex-
pression of the OSR target gene HMOX1 but not other OSR
target genes (Figure 5A). However, this compound does induce
the HSR and ISR gene sets, indicating promiscuous activity for
this pharmacologic agent. Furthermore, we see strong
upregulation of the ATF6 target gene HSPA5 (also known as
BiP), without complete activation of the ATF6 pathway. These
results indicate that bardoxolone induces pleiotropic effects on
stress-responsive genes outside of NRF2 activation inHEK293T
cells. In contrast, CBR-470-1 showed selective activation of the
OSR gene set with no significant induction of other stress
pathways, suggesting improved selectivity of CBR-470-1 for
OSR activation (Figure 5B). Consistent with this, quantitative
polymerase chain reaction (qPCR) analysis of BAG3 (an HSR
target) and HSPA5 shows that bardoxolone promiscuously
induces these non-NRF2 target genes while CBR-470-1 does
not (Figure 5C,D). However, both compounds induce
activation of the OSR target gene HMOX1 (Figure 5E). This
result is identical to that observed by our targeted RNAseq
analysis (Figure S5B-D). These results show that CBR-470-1
shows increased selectivity for OSR activation relative to
bardoxolone and demonstrates the utility for our targeted
RNAseq assay to profile the selectivity of putative OSR
activating compounds in clinical development.
Defining the Selectivity of HSR Activating Com-

pounds by Targeted RNAseq. Previous high-throughput
screening identified numerous compounds, including com-
pounds A3, C1, D1, and F1 (Figure S6A), that activate a cell-
based reporter of the HSR-associated transcription factor HSF1
in HeLa cells.21 However, the selectivity of these compounds for
the HSR remains to be fully defined. Previous reports show that
these compounds not only preferentially induce expression of
HSR target genes but also show mild induction of genes
regulated by other stress pathways such as BiP (or HSPA5)
regulated by ATF6 andHMOX1 regulated by the OSR.We used
our targeted RNAseq assay to define the selectivity of these
putative HSF1 activating compounds for specific HSR
activation. Our results show that compound A3 strongly
induced the HSR gene set (Figure 6A) to a level comparable
to that observed with dox-dependent cHSF1 activation (Figure
2B). Compounds C1, D1, and F1 also significantly induced the
HSR gene set, albeit to a lower extent (Figure 6B−D).
Administration of these compounds also induced expression
of other stress-responsive genes. This was most evident with A3,
which showed robust activation of select ISR and OSR target
genes such as ATF3 and HMOX1, respectively, without global
activation of these pathways (Figure 6A). Similar results were
observed for the other three compounds to lesser extents
(Figure 6B−D). Interestingly, both ATF3 and HMOX1 have
been shown to be transcriptionally induced following stress-
independent activation of the HSR-associated transcription
factor HSF1,17 suggesting that their increased level of expression
in response to compound treatment could, in part, reflect HSF1
activity.
To further define the selectivity of these HSR activating

compounds for the HSR proteostasis transcriptional program in
HEK293T cells, we performed whole transcriptome RNAseq
(Table S4). Analysis of the top 100 most significantly altered
transcripts in this whole transcriptome RNAseq data demon-
strated that compound A3 induced the strongest effects on gene
expression, consistent with our targeted RNAseq results (Figure
6E). Furthermore, performing the same correlation-based gene
set analysis used for targeted RNAseq revealed an identical

preferential activation of the HSR in this whole transcriptome
data set (Figure S6B−I). Interestingly, comparing genes induced
by A3 with those induced by a 43 °C heat shock6 or dox-
dependent cHSF117 activation demonstrated an overlap of
∼100 genes (Figure 6F), including many classical HSR
proteostasis target genes such as HSPA1A, DNAJB1, and
CryAB (Table S4). Importantly, all shared upregulated targets
between A3 and heat shock are also found as shared targets with
dox-dependent cHSF1. While this supports an A3-dependent
induction of the HSR, there are many genes upregulated in the
whole transcriptome data that are not upregulated by these other
HSR activating insults. GO analysis reveals that most targets
induced by treatment with A3 are involved in RNA polymerase
II-dependent transcription (Figure 6G). This finding is
consistent with recent studies indicating that apart from direct
transcriptional upregulation, HSF1 may recruit factors that
increase the rate of release of Pol II from its paused state in
transcript promoter regions.6 Thus, the altered expression of Pol
II regulatory factors suggests that A3 could influence HSR
activity by targeting RNA Pol II pause release. While the impact
of A3 on RNA Pol II could limit the further development and
usage of this compound as a chemical tool for defining HSR-
dependent regulation of cellular proteostasis, these results
demonstrate the potential for our targeted RNAseq assay to
define the selectivity of prioritized compounds identified
through reporter-based HTS for activating specific stress-
responsive proteostasis pathways.

■ CONCLUDING REMARKS
The establishment of highly selective activators of stress-
responsive signaling pathways provides unique opportunities
to identify new roles for these pathways in regulating cellular
physiology and defining their potential for correcting pathologic
defects associated with diverse diseases. Here, we establish a
medium-throughput targeted RNAseq assay that reports on the
activation of predominant stress-responsive proteostasis path-
ways such as the HSR, OSR, ISR, and UPR.We demonstrate the
potential for this approach to deconvolute the complex
integration of stress-responsive signaling pathways in HEK293
cells treated with chemical genetic or pharmacologic perturba-
tions. Furthermore, we show that this approach is suitable for
defining the selectivity of putative activators of different stress-
responsive signaling pathways. These results demonstrate that
this assay provides new opportunities to improve screening
efforts focused on establishing pharmacologic activators of
stress-responsive signaling pathways by identifying compounds
or classes with high selectivity earlier in the screening pipeline
(i.e., after reporter-based HTS). Furthermore, this assay can be
paired with medicinal chemistry to establish next-generation
compounds with improved selectivity and/or potency through
monitoring activation of specific pathway reporter gene sets as
well as other complementary approaches such as transcription
factor knockouts or pharmacologic inhibitors of stress-
responsive pathways to validate the activation or inhibition of
specific pathways observed upon pharmacologic treatment.
While we specifically focus on stress-responsive proteostasis

pathways in human HEK293 cells (see Figure 1A), many of the
genes included in our stress pathway gene sets are robustly
activated across mammalian cell types. For example, we used
these gene sets to show activation of stress signaling pathways in
mouse embryonic fibroblasts treated with Tg or As(III) similar
to that observed in HEK293 cells (Figure S7). This indicates
that this approach can report on stress pathway activation in
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other models. However, these gene sets could easily be modified
to improve reporting on stress pathway activation in other
models. The flexibility of the targeted RNAseq platform allows
inclusion or replacement of reporter genes to enhance the ability
to accurately report on pathway activation in specific tissues or
organisms, providing new opportunities to monitor stress
pathway activity in vivo for efforts such as defining compound
bioavailability and pharmacodynamics. This platform can
additionally be expanded through the inclusion of additional
gene sets reporting on the activation of other signaling pathways,
further improving the ability of this approach to define
compound selectivity at early stages of compound development.
Ultimately, the targeted RNAseq assay and approach described
herein will improve the establishment of pharmacologic
activators of stress-responsive signaling by providing new
opportunities to define compound specificity at an earlier
stage in compound development.

■ METHODS
Materials and Reagents.Thapsigargin was purchased from Fisher

Scientific (catalog no. 50-464-295). Tunicamycin was purchased from
Cayman Chemical (catalog no. 11089-65-9). Oligomycin A was
purchased from Sigma-Aldrich (catalog no. 75351). Paraquat was
purchased from Sigma-Aldrich (catalog no. 36541). The following
qPCR primers were used: Bag3 (3′-TGGGAGATCAAGATCGA-
CCC-5′, 5′-GGGCCATTGGCAGAGGATG-3′), Hspa5 (3′-GCCT-
GTATTTCTAGACCTGCC-5′, 5′-TTCATCTTGCCAGCCAGT-
TG-3′), Hmox1 (3′-GAGTGTAAGGACCCATCGGA-5′, 5′-GCCA-
GCAACAAAGTGCAAG-3 ′) , and RiboPro control (3 ′ -
CGTCGCCTCCTACCTGCT-5′, 5′-CCATTCAGCTCACTGA-
TAACCTTG-3′).
Cell Lines and Treatments. Stable cell lines expressing inducible

cHSF1, ATF6, and XBP1s were used as previously described to activate
cHSF1, ATF6, and XBP1s transcription factors, respectively.17,28 Cells
types as listed in Table 2 were cultured in DMEM with 10% FBS, pen/
strep, and glutamine at 37 °C and 5% CO2 in Corning 96-well tissue
culture plates. Cells were treated for the indicated durations (Table S2)
with either chemical genetic activators or pharmacologics solubilized in
dimethyl sulfoxide (DMSO); treatments were performed in triplicate.
RNA Extraction. RNA was extracted from HEK293T, HEK293Dax,

and HEK293TREX using the Zymo Research ZR-96 Quick-RNA
isolation kit by following the manufacturer’s instructions. Briefly, cells
were rinsed with DMSO prior to lysis, and samples were then cleared of
particulate matter through centrifugation. The supernatant was then
subjected to standard column purification steps, including an on-
column DNase treatment, prior to RNA elution in DNase/RNase-free
water.
Targeted RNAseq Library Preparation and Sequencing.

Stress-responsive sequencing libraries were prepared using the Illumna
TruSeq Targeted RNA Expression technology, with targeted probes
selected to create a custom gene panel to report on stress-responsive
transcripts across several signaling pathways. Briefly, 50 ng of intact
total RNA was reverse transcribed into cDNA using ProtoScript II
Reverse Transcriptase (25 °C for 5 min, 42 °C for 15 min, 95 °C for 10
min, and held at 4 °C), and the targeted oligo pool was hybridized in
each sample (70 °C for 5 min, 68 °C for 1 min, 65 °C for 2.5 min, 60 °C
for 2.5 min, 55 °C for 4 min, 50 °C for 4 min, 45 °C for 4 min, 40 °C for
4 min, 35 °C for 4 min, 30 °C for 4 min, and held at 30 °C). Hybridized
products were washed using magnetic beads, extended, and amplified
using i7 and i5 adapters (95 °C for 2 min, 28 cycles at 98 °C for 30 s, 62
°C for 30 s, and 72 °C for 60 s, followed by 72 °C for 5 min, and held at
10 °C). Libraries were cleaned and pooled prior to being loaded on the
MiSeq desktop sequencer.
Alignment and Expression Analysis. Alignment of targeted

RNAseq reads was performed using the Illumina TruSeq Targeted
RNAseq software using the custom target manifest containing
sequences of targeted region sequences. Alignment of whole tran-
scriptome RNAseq data was done using DNAstar Lasergene

SeqManPro to the GRCh37.p13 human genome reference assembly.
Aligned counts from Targeted RNAseq were median normalized and
log2 transformed prior to linear regression.

Whole TranscriptomeRNAseq.HEK293T cells were treated with
10 μM A3, C1, D1, or F1 for 6 h prior to RNA isolation using the
ZymoPure RNA-mini kit by following the manufacturer’s instructions,
including on-column DNase I treatment to remove contaminating
genomic DNA. RNA was quantified by NanoDrop. Conventional
RNAseq was conducted via BGI Americas on the BGI Proprietary
platform, providing single-end 50 bp reads at 20 million reads per
sample. Each condition was performed in triplicate.

Gene Expression Correlation Network Graph and Hierarch-
ical Clustering. Raw count data from the triplicate RNAseq
experiments for each condition were averaged, and Pearson correlation
coefficients were calculated for each pair of genes. We created the gene
expression correlation graph by representing each gene as a vertex and
connecting the vertices for the genes that had correlation coefficients of
≥0.6. There were a few genes whose expression levels did not correlate
with those of any other genes at this level. These genes were connected
only to the gene with which they had the highest correlation coefficient
to ensure that the network graph was fully connected. The hierarchical
clustering of genes by expression pattern shown in Figure 1 was
performed using the Euclidean distance between each gene’s expression
level correlation coefficients with all other genes as the distance metric
and single-linkage clustering as the linkage criterion. Thus, two genes
that have similar sets of correlation coefficients with all other genes were
most likely to cluster together. The network graph and dendrogram in
Figure 1 were produced using Mathematica 11.3.

Statistical Analysis. Values of the statistical significance of residual
values from targeted RNAseq correlation analysis were calculated using
standard one-way ANOVA, with the lowest p values presented. Full
ANOVA tables from our targeted RNAseq assay are included (Table
S3). qPCR data were analyzed using a one-tailed Student’s t test.
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